HackerRankMar 23, 2025

Divisible Sum Paris

Hazrat Ali

HackerRank

Given an array of integers and a positive integer , determine the number of  pairs where  and  +  is divisible by .

Example


Three pairs meet the criteria:  and .

Function Description

Complete the divisibleSumPairs function in the editor below.

divisibleSumPairs has the following parameter(s):

  • int n: the length of array 
  • int ar[n]: an array of integers
  • int k: the integer divisor

Returns
int: the number of pairs

Input Format

The first line contains  space-separated integers,  and .
The second line contains  space-separated integers, each a value of .

Constraints

Sample Input

STDIN           Function
-----           --------
6 3             n = 6, k = 3
1 3 2 6 1 2     ar = [1, 3, 2, 6, 1, 2]

Sample Output

 5


Solution :
#!/bin/python3

import math
import os
import random
import re
import sys

#
# Complete the 'divisibleSumPairs' function below.
#
# The function is expected to return an INTEGER.
# The function accepts following parameters:
#  1. INTEGER n
#  2. INTEGER k
#  3. INTEGER_ARRAY ar
#

def divisibleSumPairs(n, k, ar):
    res = 0
    for i in range(n):
        for j in range(i + 1, n):
            res += ((ar[i] + ar[j]) % k == 0)
    return res
   
if __name__ == '__main__':
    fptr = open(os.environ['OUTPUT_PATH'], 'w')

    first_multiple_input = input().rstrip().split()

    n = int(first_multiple_input[0])

    k = int(first_multiple_input[1])

    ar = list(map(int, input().rstrip().split()))

    result = divisibleSumPairs(n, k, ar)

    fptr.write(str(result) + '\n')

    fptr.close()









Comments