HackerRank•Mar 23, 2025
Divisible Sum Paris
Hazrat Ali
HackerRank
Given an array of integers and a positive integer , determine the number of pairs where and + is divisible by .
Example
Three pairs meet the criteria: and .
Function Description
Complete the divisibleSumPairs function in the editor below.
divisibleSumPairs has the following parameter(s):
- int n: the length of array
- int ar[n]: an array of integers
- int k: the integer divisor
Returns
- int: the number of pairs
Input Format
The first line contains space-separated integers, and .
The second line contains space-separated integers, each a value of .
Constraints
Sample Input
STDIN Function
----- --------
6 3 n = 6, k = 3
1 3 2 6 1 2 ar = [1, 3, 2, 6, 1, 2]
Sample Output
5
Solution :
#!/bin/python3
import math
import os
import random
import re
import sys
#
# Complete the 'divisibleSumPairs' function below.
#
# The function is expected to return an INTEGER.
# The function accepts following parameters:
# 1. INTEGER n
# 2. INTEGER k
# 3. INTEGER_ARRAY ar
#
def divisibleSumPairs(n, k, ar):
res = 0
for i in range(n):
for j in range(i + 1, n):
res += ((ar[i] + ar[j]) % k == 0)
return res
if __name__ == '__main__':
fptr = open(os.environ['OUTPUT_PATH'], 'w')
first_multiple_input = input().rstrip().split()
n = int(first_multiple_input[0])
k = int(first_multiple_input[1])
ar = list(map(int, input().rstrip().split()))
result = divisibleSumPairs(n, k, ar)
fptr.write(str(result) + '\n')
fptr.close()