HackerRankApr 13, 2025

Non-Divisible Subset

Hazrat Ali

HackerRank

Given a set of distinct integers, print the size of a maximal subset of  where the sum of any  numbers in  is not evenly divisible by .

Example
 

One of the arrays that can be created is . Another is . After testing all permutations, the maximum length solution array has  elements.

Function Description

Complete the nonDivisibleSubset function in the editor below.

nonDivisibleSubset has the following parameter(s):

  • int S[n]: an array of integers
  • int k: the divisor

Returns

  • int: the length of the longest subset of  meeting the criteria

Input Format

The first line contains  space-separated integers,  and , the number of values in  and the non factor.
The second line contains  space-separated integers, each an , the unique values of the set.

Constraints

  • All of the given numbers are distinct.

Sample Input

STDIN    Function
-----    --------
4 3      S[] size n = 4, k = 3
1 7 2 4  S = [1, 7, 2, 4]

Sample Output

3

Explanation

The sums of all permutations of two elements from  are:

1 + 7 = 8
1 + 2 = 3
1 + 4 = 5
7 + 2 = 9
7 + 4 = 11


Solution
#!/bin/python3

import math
import os
import random
import re
import sys

#
# Complete the 'nonDivisibleSubset' function below.
#
# The function is expected to return an INTEGER.
# The function accepts following parameters:
#  1. INTEGER k
#  2. INTEGER_ARRAY s
#

def nonDivisibleSubset(p, m):
    x = [0 for _ in range(p)]
    for mm in m:
        x[mm % p] += 1
    res = min(1, x[0])
    x = x[1:]
    for i in range(len(x) // 2):
        res += max(x[i], x[-(i+1)])
    if len(x) % 2 == 1:
        res += min(1, x[len(x) // 2])
    return res

if __name__ == '__main__':
    fptr = open(os.environ['OUTPUT_PATH'], 'w')

    first_multiple_input = input().rstrip().split()

    n = int(first_multiple_input[0])

    k = int(first_multiple_input[1])

    s = list(map(int, input().rstrip().split()))

    result = nonDivisibleSubset(k, s)

    fptr.write(str(result) + '\n')

    fptr.close()




Comments